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ABSTRACT
Objectives. We will review current concepts regarding bioenergetic decline in heart failure (HF). In the heart, 
the high energy demand must be met by continuous ATP generation. Cardiac energetic machinery orchestrates 
the ATP production by using oxidation of multiple energetic substrates including fatty acids (FA), glucose, amino 
acids and ketone bodies. The normal heart is metabolically fl exible and able to use different energetic fuels during 
physiologic or pathologic circumstances to better match the energy demand. Mitochondria have critical role in 
maintaining cardiac metabolic fl exibility.
Methods. We analyzed the scientifi c literature pertinent to HF and mitochondrial dysfunction.
Results. The general consent is that metabolic fl exibility is lost in HF with either preserved or reduced ejection 
fraction (HFpEF and HFrEF, respectively). The prototype of HFpEF is the metabolic heart disease that is characterized 
by increased reliance on FA oxidation for ATP production and decreased glucose oxidation, while HFrEF presents 
a decreased FA oxidation. Both types of HF are associated with a decline in mitochondrial function leading to 
increased oxidative stress, abnormalities in the redox status and energy defi cit.
Conclusion. Current research is committed to fi nd novel metabolically targeted therapeutic approaches to improve 
energetic metabolism and alleviate HF progression. 
Keywords: mitochondria, heart failure, energy.

REZUMAT
Objective. Lucrarea reprezintă o revizuire a conceptelor curente referitoare la declinul bioenergetic în insufi ciența 
cardiacă (IC). În cord, consumul mare de energie trebuie compensat prin generare continuă de ATP. Sistemul 
energetic cardiac orchestrează producția de ATP prin folosirea de substraturi energetice multiple incluzând acizi 
grași (AG), glucoză, aminoacizi și corpi cetonici. Inima sănătoasă este metabolic fl exibilă și capabilă să utilizeze 
substraturi energetice variate în diferite circumstanțe fi ziologice și patologice pentru a răspunde cerinței energetice. 
Mitocondriile au un rol critic în menținerea fl exibilității metabolice cardiace. Metode. Am analizat literatura științifi că 
referitoare la IC și disfuncția mitocondrială. 
Rezultate. Consensul general este că fl exibilitatea metabolică este pierdută în ambele forme de IC, IC cu fracția 
de ejecție prezervată sau redusă (ICpFE și ICrFE, respectiv). Prototipul de ICpFE este boala cardiacă metabolică 
care este caracterizată prin creșterea oxidării AG pentru producerea de ATP și scăderea oxidării glucozei, în timp 
ce ICrFE prezintă scăderea oxidării AG. Ambele tipuri de IC sunt asociate cu declinul funcției mitocondriale care 
determină creșterea stresului oxidativ, anomalii în statusul redox, și defi cit energetic. 
Concluzie. Cercetarea curentă este determinată să găsească noi abordări terapeutice orientate spre metabolism 
cu intenția de a îmbunătăți metabolismul energetic și atenua evoluția în IC. 
Cuvinte cheie: mitocondrii, insufi ciență cardiacă, energie.

INTRODUCTION
Heart Failure (HF) is a growing public health concern, 
and a leading cause of morbidity and mortality in in-
dustrialized countries worldwide. HHF is a frequent 
disease with a prevalence of approximately 37.7 milli-
on globally1 and accounting for 2-3% of total healthca-

re worldwide2. There are two major types of HF, HF 
with reduced ejection fraction (HFrEF) and HF with 
preserved ejection fraction (HFpEF), which share simi-
lar prevalence and poor prognosis with mortality rates 
of 50% 5 years after diagnosis3. HFrEF is defi ned by 
the presence of systolic dysfunction with an ejection 
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fraction lower than 45% disregarding the diastolic dys-
function. HFpEF is characterized by an increased left 
ventricle (LV) fi lling pressure without LV dilation, and 
with ejection fraction higher than 50%4. Disregarding 
the type, effective therapeutic strategies to preserve 
the remaining functional myocardium and delay the 
progression of HF are yet to be determined. In additi-
on, although both types of HF have different features, 
they are treated with similar traditional drugs5 with 
little success.

As a complex clinical syndrome induced by impai-
red contractile and/or relaxation performances of 
the myocardium, HF leads to inability of the heart to 
supply adequate amounts of blood to meet the pe-
ripheral tissues metabolic needs. Cardiac ischemia, 
increased preload and afterload, neurohormonal dys-
regulation, and intrinsic abnormalities of the myo-
cardium are common etiologic factors of HF2. Major 
pathogenic mechanisms responsible for HF progressi-
on are abnormalities of calcium homeostasis and bioe-
nergetics, alterations of the cardiac contractile appara-
tus with impaired mechanics, and increased oxidative 
stress 2 (Figure 1). 

The impairment of bioenergetics is considered a 
key pathogenic mechanism in HF. The heart needs 
energy in the form of ATP in both systolic and di-
astolic periods to sustain the excitation contraction 
coupling and myosin-actin cross-bridge cycles, as well 
as termination of contraction supported by energy de-
pendent processes including calcium sequestration in 
the sarcoplasmic reticulum and its extrusion from car-
diomyocytes. During maximal exercise cardiac muscle 
uses 90% of its oxidative capacity indicating that the 
heart lacks an excess capacity for energy production 
over energy utilization. There is no signifi cant energy 
deposit, and the coupling between energy supply and 
consumption follows a “pay as you go” basis. This 
means that the energy demand dictates the intensity 
of energy production.

Ninety percent of cardiac energy requirement is 
provided by mitochondrial oxidative phosphorylation, 
which is fi nely tuned to the energy demand. An opti-
mal energy balance is achieved when energy producti-
on matches the energy consumption. HF is associated 
with altered mitochondrial bioenergetics2, which may 
induce a state of energy starvation and is correlated 

Figure 1. Major structural, functional, metabolic and bioenergetic features of the failing heart. Heart failure (HF) with preserved ejection fraction 
and HF with reduced ejection fraction may both evolve to congestive HF. These functional abnormalities are progressively induced by either primary 
stiffness of the ventricular wall (defect in cardiomyocyte relaxation, interstitial fi brosis and cardiomyocyte hypertrophy) or contractile dysfunction, 
cardiomyocyte death and eventually chamber dilation. The heart relies on constant ATP supplied by oxidative metabolism. Heart failure is considered 
a disease of the myocardial energetic metabolism induced by mitochondrial dysfunction leading to energy defi cit, increased oxidative stress and altered 
redox status.
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pyruvate, is either converted to lactate or transported 
into mitochondria via the mitochondrial pyruvate car-
rier, and converted by pyruvate dehydrogenase (PDH) 
to acetyl-CoA for the tricarboxylic acid (TCA) cycle, 
also known as Krebs cycle (Figure 3). 

After entry into cardiomyocytes, long chain FAs 
(i.e., palmitate) are activated to FA-CoA that is either 
esterifi ed as triacylglycerol or enter the mitochondria 
via carnitine palmitoyltransferases (CPT1 and 2) to be 
oxidized via FA -oxidation. The end products of each 
FA -oxidation cycle are NADH, FADH2 and acetyl-
CoA, which are further oxidized by electron transport 
chain (ETC) complexes or Krebs cycle, respectively, 
ultimately leading to ATP synthesis via mitochondrial 
oxidative phosphorylation. FA -oxidation is control-
led at different steps including the inhibitory effect of 
malonylCoA (formed from AcCoA via AcCoA carbo-
xylase, ACC), FADH2/FAD+ and NADH/NAD+ redox 
ratios, and acetyl-CoA/CoA ratio, all unfavorable to 
FA oxidation12. MalonylCoA is degraded by malonyl-
CoA decarboxylase (MCD) thus releasing its inhibito-
ry effect on CPT1 (Figure 3). 
HB is produced by the liver at rates proportional 

to FA oxidation and NADH/NAD+ ratio, and repre-
sents the main ketone body utilized by the heart as 
an energy fuel. Within mitochondria, HB is sequen-
tially converted to acetoacetate, acetoacetyl-CoA and 
acetyl-CoA for the Krebs cycle10 (Figure 3). Cardiac 
mitochondria can also fully metabolize branched chain 
amino acids (leucine, isoleucine and valine) providing 
acetyl-CoA for the Krebs cycle and succinyl-CoA for 
anaplerosis. Krebs cycle is a source of reducing equi-
valents in the form of NADH and NADPH.

While electrons are transferred from the reducing 
equivalents, NADH and FADH2, to oxygen by the ETC 

with hemodynamic markers of severity in human sub-
jects with HF6,7.

Current therapies are mostly focused on decrea-
sing myocardial oxygen consumption and energy de-
mand, and aimed to decrease heart rate and afterload. 
These therapies are limited by their own effects that 
include hypotension and bradycardia. The results of 
the majority of phase III clinical trials with cardiopro-
tective agents performed in the last decade have been 
largely negative8. Current inotropic therapy is also 
limited by its disadvantage of increasing oxygen con-
sumption by the less effi cient failing heart. Therefore, 
there is a need for therapies to act on activating signals 
to increase energy production. Mitochondria is central 
for cardiac bioenergetics, and the major site of ATP 
production. This review focuses on alterations in mi-
tochondrial bioenergetics in HF, and novel therapeutic 
strategies aimed to correct mitochondrial dysfunction 
in order to balance the bioenergetics and improve the 
HF outcome.

MITOCHONDRIAL ENERGY 
METABOLISM IN THE NORMAL HEART
The heart weights only approximately 0.5% of the 
human body and consumes 8% of the 65 Kg of ATP 
produced by the whole body per day. Therefore, the 
heart is the highest metabolically active tissue in the 
human body. Approximately 95% of cardiac ATP re-
sults from mitochondrial oxidative metabolism with 
the rest deriving from glycolysis6. Cardiomyocytes are 
rich in mitochondria that are located both beneath the 
plasma membrane (subsarcolemmal) and within the in-
terfi brillar regions of cardiomyocytes (Figure 2).

In order to accomplish their energetic mission, 
cardiac mitochondria transform the chemical energy 
stored in fuel substrates into ATP through oxidative 
phosphorylation. The normal adult heart obtains 60% 
of ATP from fatty acids (FA) oxidation with the re-
maining 40% originating from the oxidation of other 
fuel substrates including glucose, lactate, amino acids 
and ketones (mainly -hydroxybutyrate, HB) (Figure 
3). 

While glucose uptake into cardiomyocytes is de-
pendent on insulin activity, the uptake of FA and HB 
is not hormonally regulated9,10. Glucose enters cardi-
omyocytes mostly via the insulin-dependent glucose 
transporter4 (GLUT4)11 and is directed through mul-
tiple metabolic pathways such as glycolysis, glycogen 
synthesis, polyol, hexosamine biosynthetic or pentose 
phosphate pathways. The end product of glycolysis, 

Figure 2. Electron microscopy image of the mouse heart.
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mal heart to respond properly to the energy demand. 
Energetic substrates have different energy effi ciency, 
which is defi ned by the amount of ATP produced for 
the oxygen consumed and expressed as P/O ratio. 
While FA oxidation gives the greatest ATP yield, it 
also uses the highest amount of oxygen with a P/O 
~2.3. Glucose is the most effi cient energy substrate 
with a P/O ratio of 2.58. 5. HB oxidation has an in-
termediate effi ciency with a P/O~2.5. 
HB is oxidized by the normal heart in proportion 

to its availability at the expense of FA and glucose10. It 
is reported that HFpEF associated with diabetes acqui-
res the ability to shift the acetyl-CoA towards ketone 
body synthesis, a characteristic of the fetal heart13. A 
decrease in glucose oxidation induces HFpEF indica-
ting that maintaining proper glucose metabolism is re-

complexes, an electrochemical gradient is developed 
across the mitochondrial inner membrane (IM), whi-
ch is used by the ATP synthase (complex V) to pho-
sphorylate ADP and form ATP. Mitochondrial ATP is 
transferred to the cytosol by phosphate exchange ne-
tworks including mitochondrial and cytosolic creatine 
kinases (CK) for contractile apparatus, sarcoplasmic 
reticulum Ca2+-ATPase and other ion pumps. 

CARDIAC METABOLIC FLEXIBILITY
Although the heart is enzymatically equipped to simul-
taneously utilize multiple fuels to produce energy, it is 
also able to change the relative contribution of these 
substrates to cardiac ATP in an effort to better adjust 
to different physiological and pathological conditions5. 
This characteristic is vital for the ability of the nor-

Figure 3. Cardiac oxidative metabolism. Normal adult heart obtains ATP mostly from fatty acid (FA) oxidation with the remaining delivered from 
glucose, amino acids and ketones (mainly -hydroxybutyrate, HB)5. Glucose uptake is mediated by the glucose transporter4 (GLUT4), and follows 
multiple metabolic pathways including glycolysis and mitochondrial glucose oxidation. For simplicity, other metabolic pathways are not depicted in this 
fi gure. The end product of extramitochondrial glycolysis, pyruvate, is converted by mitochondrial pyruvate dehydrogenase (PDH) to acetyl-CoA (Ac-
CoA) that enters the tricarboxylic acid (TCA) cycle (Krebs cycle). Long chain FAs are activated to FA-CoAs that enter the mitochondria via carnitine 
palmitoyltransferases (CPT1 and 2) and are oxidized via FA -oxidation. The end products of pyruvate and FA -oxidation spiral are NADH, FADH2 
and acetyl-CoA, which are further oxidized by electron transport chain (ETC) complexes or Krebs cycle, respectively, ultimately leading to ATP syn-
thesis via mitochondrial oxidative phosphorylation. FA -oxidation is inhibited by malonylCoA (formed from AcCoA via AcCoA carboxylase, ACC), 
FADH2/FAD+ and NADH/NAD+ redox ratios, and acetyl-CoA/CoA ratio. MalonylCoA is degraded by malonylCoA decarboxylase (MCD) thus releas-
ing its inhibitory effect on CPT1. HB is oxidized within cardiac mitochondria to acetoacetate (AcAc) that is converted to acetyl-CoA for Krebs cycle. 
Mitochondrial oxidative phosphorylation provides more than 95% of the cardiac ATP, with the remainder derived from glycolysis. While electrons are 
transferred from the reducing equivalents, NADH and FADH2, to oxygen by the ETC complexes, an electrochemical gradient is developed across the 
mitochondrial inner membrane (IM), which is used by the ATP synthase (complex V) to form ATP. Mitochondrial generated ATP is transferred to the 
cytosol by the mitochondrial and cytosolic creatine kinases (CK) for contractile apparatus, sarcoplasmic reticulum Ca2+-ATPase and other ion pumps. 
The inset represents an electron micrograph of mouse cardiac muscle showing interfi brillar mitochondria.
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to the collapse of mitochondrial function. In terms of 
ATP production, one molecule of palmitate yields far 
more ATP than does glucose. Therefore, to maintain 
a constant ATP content, a pronounced increase in glu-
cose oxidation must accompany a relatively modest 
decrease in FA oxidation. Most studies report that the 
decrease in FA oxidation is not compensated for by an 
increase in glucose oxidation20,21.

The decrease in mitochondrial oxidative metabo-
lism is associated with an increase in cytosolic glycoly-
tic rates5. Although glycolysis is an alternate source of 
energy, producing 2 ATP molecules from one glucose 
molecule, this is insuffi cient to compensate for energy 
defi cit because the complete glucose oxidation would 
produce 31 ATP molecules. The general conclusion is 
that there is no true metabolic switch characterized 

quired for cardiac metabolic health14,15. An excessive 
dependence on FA oxidation occurs in the heart ex-
posed to an excess in energy fuels (overfeeding-indu-
ced obesity, metabolic syndrome and diabetes).

In contrast, a reversal back to a fetal metabolic state 
with overreliance on glucose oxidation and decreased 
FA oxidation occurs in the failing heart, and is asso-
ciated with a state of “energy starvation” as glucose, 
although a low oxygen consuming substrate, is also a 
low ATP-yield when calculated per mole5. Most cli-
nical16,17 and experimental18 studies confi rm this type 
of cardiac metabolic infl exibility, and show that the 
decrease in mitochondrial FA oxidation predicts the 
onset of contractile dysfunction in pressure overload-
challenged rats19. In overt HF, disregarding the etio-
logy, the severe decrease in FA oxidation may be due 

Figure 4. The main redox couples governing the redox balance in cardiac mitochondria (NAD+/NADH, NADP+/NADPH, and GSH/GSSG). Normal 
cardiomyocytes maintain a constant NAD pool. Both oxidized forms, NAD+ and NADP+, are hybrid acceptors, and are converted to the reduced 
forms, NADH and NADPH. NADH is oxidized by complex I, and therefore, the NADH/NAD+ couple is important for ATP generation. The NADPH/
NADP+ redox couple is central to the antioxidant defense by donating electrons to glutathione (GSH/GSSG) that scavenges the hydrogen peroxide 
(H2O2, a Reactive Oxygen Species, ROS) via the enzymes glutathione reductase (GR), glutathione peroxidase (GPx). H2O2 is generated from superox-
ide, O•2, by dismutation via the enzyme, superoxide dismutase (SOD). For simplicity, the thioredoxin antioxidant system is not shown. Mitochondrial 
antioxidant system is mirrored by a similar scavenging mechanism in the cytosol. In these reactions, the reduced and oxidized members of the redox 
couples interconvert but are not consumed. Catalase also scavenges H2O2.
Mitochondrial NADH/NAD+ and NADPH/NADP+ redox couples are linked by the enzyme nicotinamide nucleotide transhydrogenase (NNT) that 
reduces NADP+ at the expense of NADH oxidation and utilizing the mitochondrial inner membrane proton motive force to drive this process. NNT 
is a physiologically relevant source of NADPH to drive the enzymatic degradation of H2O2. The fi gure shows that the mitochondrial redox state of the 
NADH/NAD+ and NADPH/NADP+ redox couples are maintained different as these nucleotides have different metabolic roles. The NADH/NAD+ 
pool supports the divergent transfer of electrons from fuel substrates to both the ETC and antioxidant system via NNT, and thus is only partially re-
duced in comparison to NADPH/NADP+. The cytosolic NADH is imported in mitochondria by redox shuttles, most commonly the malate-aspartate 
(M-A) and glycerol 3 phosphate shuttles (G3P).
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enzymes, and is downregulated in both animal models 
and humans with HFrEF26 but is increased in HFpEF 
associated with metabolic syndrome, which is associa-
ted with an increase in FA oxidation19. 

ETC abnormalities
There is plethora of evidence that specifi c activities 
of individual ETC complexes are decreased in HF20. 
ETC complexes aggregate into functional supercom-
plexes27, and this form of organization provides a 
more effi cient electron transport and is protective 
against excessive mitochondrial reactive oxygen spe-
cies (ROS) generation27. A decrease in mitochondrial 
supercomplexes has been reported in HF28.

Cardiolipin (CL) is an anionic phospholipid with 
four acyl chains that are enriched in linoleic acid 
((C18:2)4-CL), which resides in the inner mitochon-
drial membrane. CL provides structural and functio-
nal support to ETC components29, and its depletion 
results in reduced activities of ETC complexes. CL 
is also proposed to maintain the structural integrity 
of ETC supercomplexes, as it may act as a molecular 
‘glue’ to hold the complex protein subunits together in 
a supramolecular organization30,31. In humans, reduced 
(C18:2)4-CL, due to defective CL remodeling (Barth 
syndrome), causes dilated cardiomyopathy associated 
with destabilization of all supercomplexes containing 
complex IV, loss of complex I from the supermolecu-

by a decrease in FA oxidation and a corresponding 
increase in glucose oxidation, and that the failing heart 
is an energy-compromised (starved) organ20.

CARDIAC MITOCHONDRIA IN HF
The ATP amount in the failing heart is reported de-
creased compared with the normal heart, suggesting 
a decrease in mitochondrial oxidative phosphorylati-
on. The decrease in mitochondrial oxidative capacity 
is multifactorial and may be induced by 1) decreased 
mitochondrial biogenesis pathway; 2) specifi c defects 
in the ETC complexes.

Mitochondrial biogenesis
The formation of new mitochondria (mitochondrial 
biogenesis) is supported by synthesis of mitochon-
drial proteins and replication of mitochondrial DNA, 
both processes under the control of the transcripti-
on factor peroxisome proliferator-activated receptor 
 (PPAR ) and its co-activator  (PGC1). PGC1 
is considered the master regulator of mitochondrial 
biogenesis due to the activation of nuclear respiratory 
factors 1 and 2, (NRF1 and 2) as well as mitochondri-
al transcription factor A (TFAM), all targeting genes 
encoding for mitochondrial proteins and mtDNA22,23. 
PGC1 is downregulated in humans with HF lea-
ding to decreased mitochondrial density24,25. PPAR 
is an isoform predominantly regulating FA oxidation 

Figure 5. Mitochondrial redox modulators. Increasing the effi ciency of the electron transport chain. The fi gure shows a proposed mechanism for the 
NAD+ enhancing and lysine deacetylating effect of methylene blue (MB). A complex I defect causes a decrease in NADH oxidation. In experimental 
models of complex I defect MB accepts electrons from catalytic subunits of complex I and become reduced (MBH2) whereas cytochrome c reoxidizes 
MBH2 to MB. Therefore, MB provides an alternative electron route within complex I-defi cient cardiac mitochondria and favors NADH oxidation thus 
increasing NAD+ and SIRT3 activity. The administration of exogenous NAD or precursors (+) improved the mitochondrial NAD pool and cardiac 
function (discussed in the main text). Idebenone increases the coenzyme Q pool.
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between reduced and oxidized subunits within the mi-
tochondrial ETC according to their redox potential. 
Mitochondria have multiple redox couples (redox pla-
yers)44 including NAD+ (oxidized)/NADH (reduced), 
NADP+/NADPH, GSSG (glutathione disulfi de)/GSH 
(glutathione) (Figure 3). Energized mitochondria have 
a high NADH concentration to provide electrons for 
oxidative phosphorylation45. In contrast, in the extra-
mitochondrial space, the NADPH/NADP+ ratio is ma-
intained in a reduced state (the reduced NADPH > 
the oxidized NADP) via several enzymatic reactions 
in order to drive reductive biosynthesis and maintain 
antioxidant defense. The cytosolic GSH/GSSG couple 
is also maintained in a reduced state that is needed 
for ROS detoxifi cation. These redox couples are in-
terconnected (Figure 4). In mitochondria, the inner 
membrane nicotinamide nucleotide transhydrogena-
se (NNT) reduces NADP+ at the expense of NADH 
oxidation, utilizing the mitochondrial inner membra-
ne protonmotive force to drive this process. NNT 
is a physiologically relevant source of mitochondrial 
NADPH46. The NADPH/NADP+ couple supplies elec-
trons to keep mitochondrial GSH pool in order to 
scavenge H2O2, a strong ROS47. In conclusion, redox 
signaling regulates metabolism while metabolic state 
infl uences redox signaling. The NAD+/NADH redox 
couple is a critical node integrating metabolic and sig-
naling events.

The redox signaling network linked to the NAD+/
NADH couple depends on the total mitochondrial 
NAD pools. NAD is a substrate for enzymes including 
the SIRT family, which continuously converts NAD+ 
to nicotinamide. As NAD is degraded, cardiomyocytes 
must maintain a constant pool by de novo synthesis 
or recycle nicotinamide to replenish NAD. In car-
diomyocytes, mitochondrial NAD pool is relatively 
high matching its critical role in mitochondrial Krebs 
cycle and ETC48. Pathological cardiac hypertrophy, the 
prerequisite of HF, is associated with a decrease in 
the cardiomyocyte NAD pool49. Similar observation 
was reported in diabetic cardiomyopathy, a model of 
HFpEF50. 

The oxidized form, NAD+, is an electron acceptor 
in the redox reactions. Therefore, NAD+ and NADH 
interconvert but are not irreversibly consumed. NAD+ 
participates in all major energetic pathways including 
glycolysis, Krebs cycle, FA oxidation, ketone body me-
tabolism, and ETC (Figure 2). NAD+ is a potent acti-
vator of the Krebs cycle enzymes whereas NADH is a 
Krebs cycle allosteric inhibitor, and increases in ETC 
defects45,51,52. For example, Complex I45 and IV53 defects 
lead to increased mitochondrial NADH content. The 

lar assembly and decrease in the individual enzymatic 
activities of complexes I, III and IV31, indicating that 
CL is essential for the function of cardiac mitochon-
dria. Myocardial ischemia32 and HF33-35 are associated 
with mitochondrial dysfunction and CL peroxidation, 
loss of total CL content and decrease in (C18:2)4-
CL. Approaches that target cardiolipin are likely to 
improve electron transport across the ETC and, by 
correcting mitochondrial function, might be benefi cial 
in treating HF.

CONSEQUENCES OF ALTERATIONS IN 
MITOCHONDRIAL BIOENERGETICS IN 
HF
Oxidative stress is defi ned by an increase in re-
active oxygen species (ROS) related to the antioxi-
dant mechanisms. The ROS-generating sources in the 
heart are both extramitochondrial and mitochondrial. 
Defects in the ETC complexes lead to an impaired 
electron fl ow with accumulation of electrons at ETC 
sites that, according to their redox potential, can do-
nate electrons and univalently reduce the molecular 
oxygen to form superoxide, a strong ROS. Similarly, 
an increase in mitochondrial proton gradient (mito-
chondrial hyperpolarization) also slows down the 
electron transport and increases ROS generation36. 

A mild generation of reactive oxygen species has 
benefi cial effects on the heart by facilitating physiolo-
gical adaptive responses such as adaptation to physical 
exercise37. In addition, exercise training causes be-
nefi cial adaptation in the heart such as an increase in 
endogenous ROS-scavenging mechanisms37, restores 
bioenergetics in porcine models of HFpEF38, and al-
leviates symptomology in patients with HFrEF39,40 and 
HFpEF41. 

Uncoupling proteins dissipate the electrochemical 
gradient by allowing proton translocation back into 
the mitochondrial membrane, thus uncoupling the 
oxidation and phosphorylation processes. The obser-
ved increased expression of mitochondrial uncoupling 
proteins in HF42 might be a compensatory mechanism 
to reduce ROS by inducing a mild decrease in the mi-
tochondrial inner membrane electrochemical gradi-
ent, a process called “mild uncoupling”43. However, 
the decrease in ROS production by uncoupling may 
be an effi cient ROS decreasing mechanism in absence 
of ADP, a state that is unlikely to occur in the heart 
in vivo.

Alterations in the redox state. Classic exam-
ples of redox reactions are the transfer of electrons 
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Energy defi cit. There is a large variability regarding 
the reported mitochondrial ETC defects in HF. The 
causal relationship between these defects and the de-
crease in ATP has not been defi ned. For example, a 
severe murine complex I defect did not cause energy 
defi cit45 suggesting that in the murine heart ATP pro-
duction is not directly related to complex 1 activity. 
In contrast, most studies report bioenergetic impair-
ment in human subjects diagnosed with HF, which 
manifest as decrease in cardiac ATP, phosphocreatine 
(PCr)73,74, or, most common, a decline in the pCr/ATP 
ratio73,75,76.

THERAPEUTIC APPROACHES

Change the metabolic substrate preference
Metabolic infl exibility with an excessive increase in 
FA oxidation seems detrimental in HFpEF77. In this re-
gard, the -adrenergic receptor antagonist, carvedilol, 
used in HF to reduce cardiac workload and decrease 
oxygen consumption, also inhibited mitochondrial FA 
uptake, increased glucose oxidation and limited the in-
farct size after ischemia78 indicating that balancing the 
metabolic health is benefi cial for the heart.

Malonyl-CoA inhibits carnitine palmitoyltransferase 
(CPT)1, the rate-limiting enzyme in mitochondrial FA 
uptake (Figure 2), and its amount is dependent on the 
balance between the synthesis via acetyl-CoA carbo-
xylase and degradation via malonyl-CoA decarboxyla-
se. Inhibiting malonyl-CoA decarboxylase in animal 
models improved ischemic-induced cardiac dysfuncti-
on, reduced cardiac FA oxidation, and increased the 
glycolytic fl ux79. Studies of malonyl-CoA decarboxyla-
se inhibitors are yet to be performed in human pati-
ents with HF.

Due to the observed and possibly incomplete me-
tabolic switch towards increased glucose use in both 
animal models and humans with HF, it is proposed 
that stimulating glucose oxidation may be an attractive 
therapeutic strategy to compensate for the energe-
tically ‘starved’ failing heart80. Ketone body metabo-
lism is altered in HF. There is an increased ketone 
utilization in the severely failing heart in humans81,82. 
Further research is needed to understand the role of 
ketone oxidation in the failing heart, and to determine 
whether targeting ketone metabolism is an effi cient 
approach to improve energetics in HF.

Normalize the increased oxidative stress
Although the increased oxidative stress is an accep-
ted pathogenic mechanism in HF, clinical trials yielded 

defi ciency of frataxin, a mitochondrial protein integral 
to the assembly and function of iron-sulfur proteins 
in ETC complexes I, II and III and aconitase (Krebs 
cycle), is associated with an 85-fold decrease in cardi-
omyocyte NAD+/NADH ratio and pathologic cardiac 
hypertrophy52. Approaches to correct mitochondrial 
ETC defects increased NAD+ content51. In conclusion, 
the disruption of the electron fl ow to oxygen by ETC 
defects increases NADH causing a highly-reduced re-
dox environment within mitochondria. The cardiac 
amount of the oxidized form, NAD+, is reported re-
duced in HFrEF54, and either unchanged55 or altered56 
in HFpEF. 

While NADH/NAD+ redox ratio determines the 
production of mitochondrial ROS, the NADPH/
NADP ratio is key to antioxidant defense. They are 
linked by the NNT enzyme that transfers electrons 
from NADH to NADP+ (Figure 3). 

Sirtuins (SIRTs) remove an acetyl group from lysine 
residues in an NAD+-dependent manner by cleaving 
NAD+ to nicotinamide57, and are reported to prolong 
lifespan in mammals58. There are seven mammalian 
SIRTs that differ in their cellular localization. Although 
all SIRTs are NAD+-dependent, the extramitochon-
drial SIRT 1 and mitochondrial SIRT3 are well-known 
players in the heart. SIRT 1 protects against pathologic 
cardiac hypertrophy, and SIRT 1 knockout mice ex-
hibit developmental cardiac defects59. Sustained SIRT 
1 overexpression causes cardiomyopathy whereas 
moderate SIRT 1 expression ameliorates age-induced 
cardiac hypertrophy and dysfunction60, suggesting its 
effect is dose-dependent. SIRT 1 also protects mito-
chondrial function by activating PGC-1a61 to increase 
mitochondrial FA oxidation62. Overall, NAD+, via SIRT 
1, regulates pathological hypertrophy and mitochon-
drial metabolism.

SIRT3 is the major mitochondrial NAD+-dependent 
deacetylase63. SIRT3 knockout causes cardiac hyper-
trophy and failure under stress64 while overexpression 
protects against pathological hypertrophy via activa-
ting antioxidant mechanisms65.

SIRT 1 and SIRT3 regulate bioenergetic metabolism 
during energetic crises. SIRT3-mediated deacetylation 
activates enzymes involved in glycolysis66,67, FA oxida-
tion68-70, Krebs cycle cycle71, and the ETC72. By upregu-
lating metabolic machinery during states of decreased 
fuel availability, SIRT3 appears to be a critical metabo-
lic regulator of coupling substrate oxidation with the 
formation of reducing equivalents to ATP production 
thus maximizing effi ciency.
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tron transport, which bypass the ETC defect, rescued 
mitochondrial function in ETC defects. For example, 
methylene blue (MB), an FDA approved pharmaco-
logical drug used to treat various ailments in human 
subjects98-109 and rodents110-114, may provide such an 
electron route. MB has a low redox potential that 
allows the compound to receive electrons from com-
plex I114-116 and become reduced (MBH2) while be-
ing able to be re-oxidized by cytochrome c back to 
MB114,117. Therefore, MB is protective because it helps 
the electrons to bypass the complex I and III defects 
and still maintain oxidative phosphorylation (Figure 
5). We recently reported that MB protected retinal 
photoreceptors in a murine model of mitochondrial 
complex I defect118, and improved cardiac function by 
shifting electron away from NADH in diabetic cardi-
omyopathy, a model of HFpEF119.

Increase the effi ciency of the electron 
transport within the mitochondrial ETC 
Coenzyme Q (CoQ) pool is composed by two redox 
coenzymes, the reduced uniquinol and the oxidized 
ubiquinone. CoQ is endogenously synthesized, con-
verted to ubiquinol by two-electron reduction from 
energetic substrates fed into complexes I and II (i.e., 
pyrucate, acetylCoA), which is then oxidized back to 
ubiquinone by donating electrons to complex III (Fi-
gure 2). Incomplete, one-electron reduction of CoQ 
produces semiquinone, which is a highly reactive radi-
cal. An increase in the reduced CoQ pool (ubiquinol) 
causes a reverse electrons fl ow back to complex I re-
sulting in ROS generation120. Circulating CoQ is de-
creased in patients with HF121, which correlated with 
poor clinical outcome and increased mortality122. Q-
SYMBIO clinical trial123 revealed a reduction in mor-
tality after 2 years of treatment with CoQ. Recently, 
CoQ analogues with more effi cient penetrability into 
the mitochondria have been developed. The deli-
very to mitochondria was improved by novel quino-
ne conjugates that are tethered to lipophilic, cationic 
triphenyl-phosphonium moieties, such as MitoQ and 
SkQ124, which have proved effi cient in experimental 
models of HF125. The administration of idebenone, a 
short-chain synthetic CoQ analogue126, has had promi-
sing benefi ts in small clinical trial of genetic mitochon-
drial defects127 and HF in experimental models128 and 
human subjects129.

Protection of cardiolipin
Cardiolipin is decreased of oxidized in HF. Maintaining 
the amount and integrity of cardiolipin may be an effi -
cient therapeutic approach to improve mitochondrial 

negative results to support the long term role of ROS 
scavengers to alleviate HF83,84. The lack of long-term 
benefi ts may be related to the inability to reach effec-
tive therapeutic doses to stoichiometrically scavenge 
the ROS due to poor absorption, decreased cellular 
uptake or lack of strategy to match the ROS gene-
ration which is a continuous process. Mitochondrial 
targeted antioxidants have been tested on experimen-
tal models of cardiac disease and HF. For example, 
XJB-5-131, a mitochondria-targeted ROS scavenger is 
reported to decrease ROS generation and maintain 
mitochondrial and cardiac functions in rats subjected 
to ischemia-reperfusion injury85. Similar effects were 
obtained with another mitochondrial antioxidant, 
MitoTEMPO86. The compound EUK-8, a mimetic of 
two major mitochondrial antioxidant enzymes (supe-
roxide dismutase and catalase, Figure 4), suppressed 
the progression of cardiac dysfunction and diminished 
ROS production and oxidative damage in dilated car-
diomyopathy in mice87. These compounds are yet to 
be tested in human subjects with HF.

Mitochondrial redox therapy
As cardiac54 and circulating88 NAD pool are reported 
decreased in HF, NAD-boosting strategies are expec-
ted to be benefi cial to the cardiac metabolic health. 
For example, the food supplementation with nicotina-
mide riboside, the most energy effi cient NAD precur-
sor was found benefi cial in a murine model of dilated 
cardiomyopathy and transverse aorta constriction by 
stabilizing myocardial NAD+ levels in the failing heart89. 
The oral supplementation with nicotinamide riboside 
in patients with advanced HF decreased systemic in-
fl ammation by normalizing mitochondrial function in 
peripheral blood mononuclear cells90. Elevating the 
NAD level suppressed mitochondrial protein hyper-
acetylation and cardiac hypertrophy, and improved 
cardiac function in responses to stresses91.

NAD+-dependent SIRTs have been investigated as 
therapeutic targets in HFpEF induced by diabetes. For 
example, resveratrol, a polyphenol and well-known 
SIRT 1 activator, alleviated diabetic cardiomyopathy 
via activating SIRT 1, 2, 3 and 592,93, improved glucose 
metabolism in human subjects94,95 and decreased oxi-
dative stress in cultured cardiomyocytes96. In a rodent 
model of genetic obesity, resveratrol decreased cardi-
ac fi brosis and improved FA metabolism97. 

In the mitochondrial ETC, electrons are passed 
from donors to acceptors according to their redox 
potential. As ETC defects delay or reverse the elec-
tron transport, providing alternative paths for elec-
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used to discover novel therapeutic targets and mito-
chondrial modulator to mitigate HF.
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