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Extracellular vesicles in diabetic cardiac and
cerebro-vascular pathology
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INTRODUCTION
Diabetes mellitus is a common chronic disease all over 
the world, with increasing incidence and prevalence, 
due to contemporary lifestyle with reduced physical 
activity, processed food and increased obesity. A me-
ta-analysis published in 2009, including studies from 
91 countries, reported an estimate for 2010 of 285 
million people with diabetes worldwide, with signifi -
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cant differences between populations and regions, and 
a predicted increase from 2010 to 2030 of 54%, cor-
responding to an annual growth of 2.2%, nearly twice 
as high as the annual growth of the total world adult 
population1.

Individuals with type 2 diabetes mellitus develop 
more frequently than healthy controls cardiovascular 
disorders, including coronary heart disease, stroke, 
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peripheral arterial disease, and diabetic cardiomyo-
pathy, mainly through the chronic, damaging exposure 
of the vascular system to hyperglycemia2. Therefore, 
it is important to understand the exact mechanisms 
through which diabetes contributes to the develop-
ment and severity of these complications.

Extracellular vesicles (EV) represent small cell-se-
creted structures naturally released into the extra-
cellular space by all eukaryotes and many prokaryo-
tes, containing proteins, lipids, nuclear material and 
noncoding RNAs2. They were fi rst described in the 
late 1960s and are important mediators of cell to cell 
communication in several diseases, including diabetes 
mellitus and cardiovascular disease. Most cell types 
can release vesicles into the interstitial space. These 
vesicles can be found in body fl uids, both human and 
animal, such as blood, urine, tears and saliva, as well as 
in cell cultures3.

Three populations of extracellular vesicles are de-
scribed presently: 1. Exosomes are the smallest, with 
a diameter around 30-150 nm in diameter. They are 
released through exocytosis after fusion of multivesi-
cular bodies with the plasma membrane; 2. Microve-
sicles (microparticles/ectosomes) are larger vesicles, 
with a diameter of 100-1000 nm, which are formed 
by the outward budging and scission of the extracellu-
lar membrane; 3. Apoptotic bodies are the largest 
subtype of microvesicles with a diameter of 1-5 μm, 
generated by the plasma membrane of apoptotic cells4.

Several strategies are currently available for the 
quantifi cation of extracellular vesicles, the most po-
pular being ultracentrifugation, among others, such as: 
density gradient, precipitation, fi eld fl ow, chromato-
graphy and affi nity based capture and microfl uidic te-
chniques4. All available isolation methods are time in-
tensive, require expensive equipment, and are limited 
by the fact that they do not purify specifi c populations 
of vesicles, probably due to lack of standardization 
of the techniques and methods4. In the last 8 years, 
the International Society of Extracellular Vesicles has 
constantly tried to update the topics of nomenclature, 
separation, characterization and functional analysis of 
EV5.

EV AND CORONARY ARTERY DISEASE
Recent studies have shown that atherosclerotic lesi-
ons of all stages contain microvesicles6,7. Higher levels 
of circulating microvesicles have been discovered in 
individuals with cardiovascular risk factors, such as 
smoking8, dyslipidemia9, diabetes mellitus10 and arteri-

al hypertension11, probably through activation or from 
apoptosis of different cells being exposed to a dama-
ging stimulus.

Data extracted from in vitro studies suggest that 
microvesicles can have both pro-infl ammatory and 
anti-infl ammatory effects, depending on different si-
tuations3. Microvesicles increase the release of pro-
infl ammatory cytokines (mainly interleukin 6 and 8) 
from endothelial cells and leukocytes, promoting 
the adhesion of monocytes to the endothelium and 
their migration to the atherosclerotic plaque3,12. Also, 
endothelial microvesicles can activate monocytes. 
Another effect of microvesicles is their interaction 
with the vascular endothelium and decreasing the NO 
production by endothelial cells-consequently impai-
ring endothelial properties13. Endothelial microvesicles 
and platelet derived microvesicles increase endotheli-
al permeability14. Microvesicles promote adhesion of 
monocytes to the endothelium by increasing endothe-
lial expression of adhesion molecules15.

Various microvesicles contribute to foam cell for-
mation in the atherosclerotic plaque by stimulating li-
pid and cholesterol formation in macrophages. Macro-
phages and foam cell undergo afterwards apoptosis, 
forming a core of extracellular lipids. Increased mono-
cytes and macrophage apoptosis contributes to incre-
ased microvesicle release in the plaque. Microvesicles 
of monocyte and macrophage origin are the largest 
population of microvesicles in human atherosclerotic 
lesions16.

Infi ltration of LDL particles in the vascular wall 
during the atherosclerotic process can induce the for-
mation and release of tissue factor enriched micro-
vesicles from the smooth muscle cell, microvesicles 
which in their turn infl uence smooth muscle cell pro-
liferation and migration17.

Extracellular vesicles of different origins, with diffe-
rent microRNA content, contribute to smooth mus-
cle cell proliferation19.

Several studies of patients with stable coronary 
artery disease have reported increased levels of cir-
culating microvesicles. Specifi c microvesicle subpo-
pulations, especially those of endothelial origin, cha-
racterized by CD 144+, CD 131+/annexin A5+, or 
microvesicles containing miR-199a and miR-126, are 
currently researched as interesting biomarkers for 
cardiovascular risk and mortality in these patients20-22.

Calcifi cations present in the atherosclerotic plaque 
have destabilizing effect in early lesions, favoring rup-
ture, but gain a potential protective effect in advanced 
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lesions with heavy calcium deposits23. The calcifi cation 
process is based on three mechanisms: 1. Cell apopto-
sis, which releases microvesicles and necrotic debris, 
leading to nucleate apatite; 2. Defi ciency of minerali-
zation inhibitors (both tissue derived and circulating), 
leading to random apatite deposits; 3. An altered di-
fferentiation of vascular smooth muscle cells and stem 
cells, leading to bone formation24. As several studies 
have shown, atherosclerotic plaque calcifi cations are 
associated with extracellular vesicles of endothelial, 
smooth muscle cell and macrophage origin.

Exposure of vascular smooth muscle cells to pro-
infl ammatory cytokines can stimulate the release of 
exosomes which can mineralize when inhibitors of 
calcifi cation are missing or not functioning25. Also, en-
dothelial cells exposed to proinfl ammatory stimuli can 
release microvesicles rich in bone morphogenetic pro-
tein 2, promoting calcifi cation in vascular smooth mus-
cle cells26. Alterations in local homeostasis of calcium 
and phosphate lead to the formation of macrophage 
derived exosomes which stimulate mineralization27.

Recent studies have also noted that in humans, 
advanced atherosclerotic plaques have a high content 
of procoagulant microvesicles, originating form leuko-
cytes, erythrocytes and smooth muscle cells. These 
microvesicles can actively initiate the coagulation cas-
cade, either through the presence of tissue factor on 
their surface, or by exposing phosphatidylserine, whi-
ch concentrates factors VII and VIIa on their outer 
membrane16,28.

Circulating leukocyte and platelet derived microve-
sicles can affect the clotting29, but the actual magnitude 
of the prothrombotic effects of microvesicles in acute 
coronary syndromes is still under evaluation3,30.

In opposition to microvesicles, exosomes have 
shown antithrombotic effects. In animal studies plate-
led-derived exosomes suppressed platelet aggregation 
and occlusive thrombosis31.

Microvesicles infl uence different mechanisms that 
lead to plaque destabilization and rupture. Intraplaque 
hemorrhages are produced by neovascularization ori-
ginating from adventitial tissue, stimulated by plaque 
microvesicles, such as CD40+ vesicles of macrophage 
origin. Hemorrhages are also favored by leukocyte and 
endothelial microvesicles with fi brinolytic activity32,33.

Microvesicles can rise endothelial permeability 34 
and also modulate infl ammation in the plaque35, pro-
moting fi brous cap rupture. Fibrous cap weakening is 
associated with smooth muscle cell apoptosis, indu-
ced by the presence of microvesicles and exosomes, 

released in some pathological conditions36. Moreo-
ver microvesicles can infl uence breakdown of matrix 
structural proteins through metalloproteinase (MMP) 
interactions3.

The fi nal evolution of the atherosclerotic plaque 
is represented by plaque erosion or rupture with in 
situ thrombosis, clinically expressed as acute coronary 
syndrome3.

Circulating levels of procoagulant microvesicles 
are higher in patients with acute coronary syndromes 
compared to healthy controls or patients with stable 
coronary artery disease37, the origin of those microve-
sicles being mostly endothelial cells, leukocytes, eryth-
rocytes and platelets22,37. Circulating microvesicles al-
terate endothelium dependent NO mediated vasodila-
tion and endothelial microvesicles increase endothelial 
thrombogenicity14,38.

Circulating microvesicles have been also investiga-
ted as prognostic markers in secondary prevention, 
in order to identify patients at high cardiovascular 
risk21,22. Increased levels of CD11b+/CD66+ leukocy-
te derived microvesicles could be useful in identifying 
asymptomatic patients at high risk for plaque ruptu-
re39, while CD3+/CD45+ microvesicles could identify 
individuals who will develop a major cardiovascular 
event40. 

In patients with acute ST elevation myocardial in-
farction, circulating microvesicles from the coronary 
arteries contain higher levels of oxidation specifi c epi-
topes, linked to infl ammatory responses involved in 
atherosclerosis, than microvesicles from the periphe-
ral circulation41. 

Circulating exosomes and microvesicles with speci-
fi c cardiac microRNAs, increase after coronary artery 
by-pass. Expression of miR-208a in circulating exoso-
mes increases in patients with acute coronary syndro-
mes42 and specifi c p-53 responsive microRNAs from 
plasma exosomes are predictive indicators for heart 
failure after myocardial infarction43.

EV AND CEREBROVASCULAR DISEASE
Regarding cerebrovascular disease, especially stroke, 
studies have shown that exosomes, especially those 
derived from stem cells, play an important role in ne-
urological disease, preventing post-ischemic suppres-
sion. Also, exosomes might be an interesting thera-
peutic resource in the fi eld of regenerative medicine 
after stroke44.

After stroke, exosomes are released from brain 
cells and can be detected in the peripheral blood or 
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of DCM and several studies have shown that EV are 
essential in the intercellular crosstalk between heart 
cells2,62.

Cardiomyocyte’s derived EV are implicated in dia-
betic cardiomyocyte steatosis. Higher levels of miR-1 
and miR-133a were noted in EV derived from lipid loa-
ded cardiomyocytes, in the serum of mice fed with a 
high fat diet and in the circulation of diabetic patients63.

An animal study performed in 2014 has shown that 
the communication between cardiomyocyte derived 
EV and endothelium is altered in diabetes, inducing an 
altered angiogenesis64. 

Endothelial cell death and dysfunctional angiogene-
sis are frequent in diabetes mellitus. Several microR-
NA based mechanisms have been studied in order to 
explain vascular dysfunction in diabetes2. Hyperglyce-
mia increases levels of miR-503 in the endothelium, le-
ading to low endothelial cell proliferation and angioge-
nesis65. Also, hyperglycemia reduces miR-126 expres-
sion in extracellular vesicles derived from endothelial 
cell, thus impairing endothelial cell repair66. Reduced 
miR-126 expression in circulating EV and endothelial 
progenitor cells derived EV in patients with uncontro-
lled diabetes altered endothelial repair, increased apo-
ptosis and the production of reactive oxygen species67.

Cardiac fi broblasts are important components of 
the fi brotic response in diabetic cardiomyopathy. A 
potential mediator of the pro-fi brotic action induced 
by hyperglycemia in the cardiac fi broblasts is miR-21*. 
Inhibition of miR-21* in mice with cardiac hypertrophy 
suppressed the myocardial thickening68. Also, a model 
including in vitro cellular stretch and in vivo pressure 
overload has induced the release of extracellular ve-
sicles form cardiomyocytes enriched with angiotensin 
type I receptor69.

THERAPEUTIC POTENTIAL OF EV
According to results from studies from the last 5 to 
10 years, extracellular vesicles could play an important 
role in different cardiac regenerative therapies and co-
uld also be used as therapeutic vectors in cardiovas-
cular medicine.

Platelet derived vesicles induce vascular endotheli-
al growth factor (VEGF) dependent angiogenesis and 
stimulate post-ischemic revascularization after chro-
nic ischemia70. Also, plasma derived exosomes activa-
te Toll like receptor 4 on cardiomyocytes and thus 
protect the myocardium from ischemia-reperfusion 
injury71.

Mesenchymal stem cell derived extracellular vesi-
cles could be an alternative to stem cell transplanta-

the cerebro-spinal fl uid45,46. As a response to stroke, 
exosomes are released also from blood cells and en-
dothelial cells47. Circulating exosomes could therefore 
be useful biomarkers for stroke progression and re-
covery44.

Exosome levels of cystatin C and CD 14 have been 
good predictors in studies of vascular risk in patients 
with coronary artery disease and also they have been 
associated to the progression of cerebral atrophy in 
patients with vascular disease48.

Circulating exosomes can express different mi-
croRNAs in various types of cerebrovascular disea-
se. Serum exosomal miR-9 and miR-124 levels are 
higher in patients with stroke compared to controls49. 
Another study has reported higher levels of miR-223 
in acute ischemic stroke, correlated to stroke severity 
and short term outcomes50. Finally miR-199b-3p, miR 
27b-3p, miR-130a-3p, mi-R 221-3- and miR-24-3p are 
more expressed in patients with asymptomatic carotid 
artery stenosis progression51.

Exosomes derived from mesenchymal stem cells 
have enhanced in animal studies the restorative effects 
in the brain after stroke, reducing neurological impair-
ment, promoting grey matter repair and white matter 
repair, as well as neurogenesis and reversing stroke-
induced peripheral immunosuppression52-56.

Cardiovascular dysfunction has been proposed as 
one of the main causes of cognitive impairment in the 
elderly, this association being stronger in patients with 
diabetes mellitus57,58. In vitro studies have shown that 
extracellular vesicles in diabetic microvascular disease 
may increase the haemato-encephalic barrier perme-
ability59,60.

EV AND DIABETIC CARDIOMYOPATHY 
(DCM)
Diabetic cardiomyopathy can be clinically defi ned by 
the presence of abnormal myocardial performance or 
structure in the absence of epicardial coronary artery 
disease, hypertension, and signifi cant valvular disease. 
Hyperglycemia is the cornerstone of the pathogenesis, 
inducing stimuli that result in myocardial fi brosis and 
collagen deposition. These processes are generating 
altered myocardial relaxation and determine diastolic 
dysfunction on ultrasound imaging61. Over time, the 
progression of diabetic cardiomyopathy can lead to 
clinically manifest heart failure. Different cell types in 
the heart (such as cardiomyocytes, endothelial cells, 
smooth muscle cells, hematopoietic derived cells 
and fi broblast cells) contribute to the pathogenesis 
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cellular vesicles from circulation, liquid biopsies and 
different tissue still limit current knowledge on this 
subject. Also, there is still little information about in 
vivo dynamics of extracellular vesicles. Further large 
cohort animal and human studies are necessary to va-
lidate extracellular vesicles as diagnostic and therape-
utic tools.
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